EP Performance Requirements for In-Situ Propellant Usage

James Gilland
Ohio Aerospace Institute
20th Advanced Space Propulsion Workshop
Nov. 17-19, 2014
Cleveland, Ohio

Study Motivation

- For a "robust" exploration program, i.e.,
 - Continuous presence
 - Affordable operation
- In Situ propellant utilization must be considered.
 - In Situ is usually applied to low I_{sp} technologies
- The benefit, if any of In Situ utilization for electric propulsion (EP) systems should also be examined.
 - Technology impacts
 - Benefits

Analysis Approach

- Due to unknowns in electrodeless thruster performance, use "parametric thruster"
- Missions considered:
 - Lunar cargo
 - Essentially an orbital transfer mission
 - Constant ΔV of 8 km/s
 - Preliminary considerations for interplanetary (Mars)
- Incorporate mission analysis with thruster performance
- Look at necessary thruster efficiency for feasible missions

Lunar Cargo Mission Scenario

- 1. First Delivery:
- Initial reuseable cargo vehicle transports cargo to lunar orbit with Earth propellant
- 3. Cargo vehicle takes on return propellant and next outbound propellant load at Moon
- 4. Vehicle returns to receive next cargo load
- 5. Steady state operation proceeds using in situ propellant Round trip time fixed at 300 d to allow for 1/year delivery rate

Mission No.	Payload Outboud	Propellant Source	Payload Inbound	Propellant Source
1	Lunar Cargo - M _I	Earth	Return propellant – M _{p2}	Moon
2, 3,	Lunar Cargo - M _I	Moon	Return propellant M _{p2}	Moon

Lunar Cargo Scenario

The "Parametric" Thruster

η is a function of I_{sp}:

$$\eta = \frac{bI_{sp}^2}{d^2 + I_{sp}^2} \text{ or } \frac{bu_e^2}{d^2 + u_e^2}$$

$$u_e = g_0 I_{sp}$$

- "b" term is essentially the efficiency of the acceleration process
 - Nozzle efficiency, for example
- "d" term is essentially the ionization cost of the plasma
 - Related to propellant type

Low Thrust Rocket Equation

Outbound (1):
$$e^{-\frac{\Delta V}{u_e}} = \frac{M_l}{M_i} = \frac{M_l + \alpha P_e}{M_l + \alpha P_e + M_p} \Rightarrow e^{-\frac{\Delta V}{u_{e1}}} = \frac{\mu + \frac{\alpha u_{e1}^2}{2\eta \tau_1}}{1 + \frac{\alpha u_{e1}^2}{2\eta \tau_1}}$$

Inbound (2):
$$e^{-\frac{\Delta V}{u_{e2}}} = \frac{M_{l2}}{M_{i2}} = \frac{M_{p1} + \alpha P_e}{M_{p1} + \alpha P_e + M_{p2}}$$

M_I = Payload Mass

 M_p = Propellant Mass

M_i = Initial Mass

 α = Specific Mass (kg/kWe)

 μ = Payload fraction = M_I/M_i

 τ_1 = Outbound Thrusting time

Lunar Mission Calculations

- Optimize u_{e1}, power/payload for outbound mission
 - Functions of α , τ_1 , b, and d
- Calculate necessary return u_e based on outbound power level
- Use calculated power, return propellant to determine overall mission benefit
 - Results normalized to outbound payload mass
 - Express results in terms of efficiency (b, d)

Specific Impulse

Propellant	Isp (S)	b	d (km/s)
Xenon	1500-3300	0.86	11.9
Krypton	4000-7000	0.86	15.0
Argon	5000-8000	0.84	22.5
Xe Hall	1000-3000	0.87	14.1

- u_e outbound based on optimum for input trip time
 - Return u_e = outbound
 - Return power = outbound
- Power, propellant normalized to outbound payload mass

Return trip imposes more stringent limits on b, d

Power/Payload mass

- Power: For 100 mt, 1 10 MWe at low b, high d
- Propellant requirements exceed payload at low b, high d

Optimum u_e (km/s) contours

Outbound trip time (d) contours

Mission performance Low b,d → High Propellant

Leveraging Resources through Collaboration

Lunar Impacts

- b < 0.5, d > 20 km/s lead to strong increases in propellant, power requirements
 - Limiting space defined by d/b ~ constant
 - Constant will depend on system α , trip time requirements

Issues for interplanetary missions

- Mission ∆V depends on system performance
- Complex optimization
- Refueling scenario is unclear
 - At planet?
 - At Earth?
 - Multiuse?

Preliminary Assessment

- One way mission sensitivity to thruster b, d
 - Payload fraction (μ_L) contours for range of u_e , b, d
 - 300 d interplanetary time,
 10 kg/kWe propulsion
 system
- High (0.5) μ_L severely restricts ue
 - b< 0.5, d > 40 km/s severely impacts performance

 μ_l contours, 300 day Mars trip

Conclusions

- The mission impact of varying thruster efficiency (as a result of using in situ propellants) has been examined parametrically for a lunar cargo and sample Mars mission
- Independent variables: efficiency parameters (b,d), trip time, specific mass, u_e
- Cases:
 - Lunar cargo (300 d round trip, 20 kg/kWe):
 - Constraint on d/b ≈ 70
 - Strong power, propellant limits
 - Mars cargo (300 d one way, 10 kg/kWe):
 - b < 0.5, d > 40 km/s strongly increases power, propellant

Thruster Options

- Electrodeless
 - Performance is less well understood than "Conventional" thrusters
 - Pulsed Inductive Thruster (PIT)
 - No electrodes inductive coil
 - Performance has been observed to be propellant dependent
 - Plasma wave concepts
 - Helicon, VASIMR,
 - Some (helicon) are based on electron heating rf requirements independent of propellant
 - "Thermal" systems propellant mass, excitation losses determine I_{sp} , η
 - FRC concepts

Electric Propulsion Issues with In Situ Propellants

- Several potential extraterrestrial propellants are oxidizing or contain
 O₂
 - Lunar O_2 , H_2O
 - Martian CO₂
- Molecular propellants degrade EP performance
 - Increased excitation losses lower efficiency (η)
 - Non optimal molecular weight affect I_{sp}
 - Multiple species can result in acceleration inefficiency
- Thruster impacts
 - Corrosion of exposed metal anodes, cathodes, grids
 - Charge-to-mass effects on I_{sp}
 - Ionization and excitation losses decrease η
 - Changes in divergence with species can decrease η

